
Exact Visualization of Neural Network Geometry 
and Decision Boundary

Challenge: Current methods for visualizing the decision boundary of deep neural networks or

the zero level sets of individual neurons require sampling, dichotomic search or gradients. Such

methods are neither exact nor efficient.

Solution: We provide a fast and scalable exact visualization method for neural network

geometry (level sets of neurons) and decision boundary of Deep Neural Networks with

continuous piecewise linear (CPWL) non-linearities.
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Deep Neural Networks with CPWL non-linearities are Affine Spline

Operators i.e., their input to output mapping is expressed as
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Fast Computation of Partition Geometry

Here, Ω is the partitioning induced by the network in the input space, 𝑨ω
and 𝒃ω are affine parameters for the region 𝜔 and 𝑥 are input vectors.

Fig 1: Given an input domain as a polygonal region and a set of hyperplanes, SplineCam (proposed method) first produces a graph using all the edge-hyperplane and hyperplane-hyperplane 
intersections. To find all the convex cycles in the graph, we select a boundary edge (blue arrow), do a breadth first search to find the shortest path through the graph between the two nodes 
and obtain the adjacent region (blue). While performing the traversal we enqueue the traversed edges for repetition. For each of the enqueued edges, we repeat the process to obtain the 
neighboring regions. Each non-boundary edge is allowed to be traversed twice, once from either direction. Once regions are found, we obtain a new set of hyperplanes corresponding to 
deeper layers and create partition graphs for each region. 

Visualizing 2D slices of a DNN input space 
partition analytically

Fig 3: Growth of the number of regions with width (Left) and runtime of our algorithm 
(right) for a single layer randomly initialized ReLU neural network with variable width (n).  
Solid lines represent different input space dimensionality. For all the input dimensions, we 
take a randomly oriented square 2D domain centered on the origin and compute the input 
space partitioning on this domain. With increased input dimensionality, we see a slight 
reduction in number of regions and runtime.

Fig 2: Neural networks with CPWL non-linearities can be exactly visualized as affine spline 
operators. Here we present exact visualization of the decision boundary and partition 
geometry of a 3D neural signed distance field (SDF). (Top left) Surface normals obtained 
from the learned signed distance field with annotations indicating slices used for 
visualization. For each of the slices (Rest), we can see the spline partition geometry of the 
learned SDF- each contiguous line represents a neuron, on either side of which it gets 
activated/deactivated. Neurons from different depths of the network create a partitioning 
of the input space into 'linear regions'. Here the colored lines (red, orange, green) represent 
the decision boundary learned by the SDF. Note that while the final neuron obtains the 
decision boundary, many neurons place their boundaries close to the ground truth surface to 
obtain the final SDF representation. 

Visualizing and sampling the decision boundary
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Fig 4: (Top Left) Decision boundary 
(red) visualization for an MLP with 
width 50 and depth 3, trained on 
fashion-MNIST. Black lines 
represent the spline partition of the 
network. Three correctly classified 
samples from training are used to 
define a 2D plane in the input space 
for visualization. (Top Right)
Decision boundary and partition 
visualization of a convolutional 
neural network trained on MNIST, 
with two convolutional layers and 
one hidden fully connected layer of 
width 50. One of the digit 3 samples 
is misclassified by the network as 
digit 2. (Bottom) Random samples 
from the decision boundary.

Local characterization of the input space via 
partition statistics

Fig 5:Average partition statistics around 90 TinyImageNet test samples with and without data 
augmentation (DA) training for VGG11 and VGG16. The average volume and number of regions 
are indicative of partition density whereas eccentricity is indicative of the shape of the regions. 
Both DA and increasing VGG depth, increases region density around test points.
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